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Abstract. It is of high biomedical interest to identify gene interactions
and networks that are associated with developmental and physiological
functions in the mouse embryo. There are now large datasets with both
spatial and ontological annotation of the spatio-temporal patterns of gene-
expression that provide a powerful resource to discover potential mecha-
nisms of embryo organisation. Ontological annotation of gene expression
consists of labelling images with terms from the anatomy ontology for
mouse development. Current annotation is made manually by domain
experts. It is both time consuming and costly. In this paper, we present
a new data mining framework to automatically annotate gene expression
patterns in images with anatomic terms. This framework integrates the
images stored in file systems with ontology terms stored in databases, and
combines pattern recognition with image processing techniques to identify
the anatomical components that exhibit gene expression patterns in im-
ages. The experimental result shows the framework works well.
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1 Introduction

Understanding the role of the expression of a given gene and interactions be-
tween genes in a mouse embryo requires monitoring the gene expression levels
and spatial distributions on a large scale. The availability of high throughput
instruments such as RNA in situ hybridization (ISH) method provides the possi-
bility to construct a transcriptome-wide atlas of mouse embryos that can provide
spatial gene pattern information for comprehensive analysis of the gene inter-
actions and developmental mechanisms of the mouse embryo. The ISH employs
probes to detect and visualise spatio-temporal gene patterns in tissues. The out-
puts of the ISH on tissues are images stained to reveal the presence of gene
expression patterns. To understand gene functions and interactions of genes in
depth, we need to transform the raw image data into knowledge. Annotating
the raw images of the ISH provides a powerful way to address this issue. The



process of annotating gene expression pattern is to label images with terms from
the ontology for mouse anatomy development. If an image is tagged with a term,
it means that the anatomical component is expressing as a gene.

Much effort has been invested into the curation of gene expression patterns in
developmental biology, for example, the EUREXPress-II project [1] has built a
transcriptome-wide atlas database for the developing mouse embryo established
by ISH, which has collected more than 18,000 genes at one development stage of
the mouse embryo and curated 4 Terabytes of images. The research work in [2]
has produced 3375 genes for Genome-wide analysis on Drosophila. Many other
gene expression pattern images generated via ISH such as flybase [3] and mouse
atlas[4] also provide rich information for the genetic analysis on tissues. The
current annotations of gene expressions are made manually by domain experts.
With massive amount of curated images available for analysis, it is a huge task
for domain experts. Therefore, developing efficiently automatic annotation tech-
nique is important. Some existing work [5][6][7] [8] has made attempts on the
automating annotation of the gene expression patterns on fruit fly and mouse
brain [9]and has provided potential opportunities for further genetic analysis.
However, to date, no related work has been done on the automatic annotation
of gene expressions for mouse embryos. Comparing with a fly embryo, a mouse
embryonic structure [15][16] is more complicated and has more anatomic com-
ponents, for example, the EURExpress data have 1,500 anatomical features used
for the annotations of the mouse embryo.

In this paper, we have used image data from the EURExpress-II project [1]
and proposed a new data mining framework for automatic annotation of gene
expression patterns in images from developmental mouse embryos. The initial
result from the pilot is promising and encouraging. The main contribution of
our work consists of following aspects: (1) The combination of statistical pattern
recognition and image processing methods can reduce the cost for processing
large amount of data and improve the efficiency. We employ the image process-
ing method to standardise and denoise images. The wavelet transform is used
to generate and project features from spatial domain to wavelet domain. Con-
sidering the high-dimensional features, we use Fisher Ratio analysis to extract
the significant features and build up the classifiers based on Linear Discriminant
Analysis(LDA). Our classifiers have been evaluated with multi-objective gene
expression patterns coexisting in images and the initial results have shown our
proposed framework functioned well. (2) Due to multi-anatomical components
coexisting in images, this is a typical multi-class classification problem. In this
framework, we have formulated this multi-class classification into a two-class
problem. We have trained one classifier for each anatomical component. As a
result, multi-classifiers for multi-components have been constructed. Each clas-
sifier in our framework is a binary classifier, which will give an answer either
‘yes’ or ‘no’ when an un-annotated image is coming through. The main advan-
tage is a strong extensibility of the framework. If a new anatomical component
to be annotated appears, we can create a new classifier and directly plug it in
and no need to train previous existed classifiers. The classification performance



will not affected due to introducing a new class under the same observation
dataset. Meanwhile, this design can also improve the scalability and parallel
process capability. Classifiers can be arbitarily assembled and deployed based on
requirements.

The rest of this paper is organised as follows: the problem domain analysis
is described in Section 2; Section 3 presents the methodology used in this pro-
posed framework; Section 4 describes the evaluation result; Section 5 presents
the conclusion and future work.

2 Problem Domain Analysis

Currently, in the EURExpress database, 80% of images (4 Terabytes in total )
have been manually annotated by human domain experts. For cost-effectiveness,
our goal is to automatically perform annotation by classifying the remaining
20% into the correct terms of anatomical components (this would be still 85,824
images to be annotated with a vocabulary of 1,500 anatomical terms). In addition
if this is successful we can also validate existing annotations to find errors and
inconsistencies. This is a significant challenge.

— Firstly the images generated via ISH include variations arising from natu-
ral variation in the source embryos and experimental processing variation
and distortion. The same anatomic components therefore may have variable
shape, location and orientation.

— Secondly, each image for a given gene will in general be annotated with mul-
tiple anatomic terms. This means features for multiple anatomy components
coexist in the image, which increases the difficulty of discrimination.

— Thirdly, the number of images associated with a given anatomy terms is
uneven. Some of terms may be associated with many images others with
only a small number.

— Finally, the dimensionality of each image is high and represented as pixels
m = n. and in the EurExpress case typically 3Kx4K pixels.

To address these challenges, we propose a new extensible data mining frame-
work that integrates both the images in the file systems and annotation databases
and combines image processing with statistical pattern recognition techniques
to automatically identify gene expressions in images, as shown in Fig. 1.

To automatically annotate the remained 20% images, we need to learn these
annotations by machines first and then automate the classification process by
the deployment of classifiers. This would require a training stage to train these
annotated data and build up classifiers, a test and evaluation stage for evaluating
the performance of classifiers and then finally a deployment stage for deploying
the classifiers to perform the classification of un-annotated images.

The processes in the training stage include image integration, image process-
ing, feature generation, feature selection and extraction, and classifier design.

— Image integration: Before starting the data mining, we need to integrate
data from different sources: the manual annotations have been stored in the
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Fig. 1. The data mining framework of automating annotation of gene expressions

database and the images are located in the file system. The outputs of this

process are images with annotations.

— Image processing: The size of the images is variable. We apply median
filtering and image rescaling to reduce image noise and rescale the images to
a standard size. The outputs of this process are standardised and denoised
images, which can be represented as two-dimensional arrays (m * n).

— Feature generation: After image pre-processing, we generate those fea-
tures that represent different gene expression patterns in images. We use
wavelet transform to obtain features. The resulting features of wavelet trans-
form are 2 dimensional arrays (m *n).

— Feature selection and extraction: Due to the large number of features,
the features need to be reduced and selected for building a classifier. This
can be done by either feature selection or feature extraction or both. Feature
selection selects a subset of the most significant features for constructing
classifiers. Feature extraction performs the transformation on the original
features for the dimensionality reduction to obtain a representative feature
vectors for building up classifiers.

— Classifier design: The main task in this case is to classify images into the
right gene terminologies. The classifier needs to take an image’s features as an
input and for each of anatomical features outputs a rating as ‘not detected’,
‘possible’; ‘weak’; ‘moderate’ or ‘strong’ (In the current experimental stage,
we use two types ‘ detected as a gene’ and 'not detected as a gene’). We have
built separate classifiers for each of anatomical components and considered
them independently.

The test and evaluation stage will use the result from the training stage to
test images. During this stage, k-fold cross validation is used for evaluating the
classification performance. With k-fold validation, the sample dataset is ran-
domly split into & disjoint subsets. For each subset, we train a classifier using
the data in the other k-1 subsets and then evaluate the classifier’s performance
on the data in that subset. Thus, each record of the data set is used once to eval-



uate the performance of a classifier. If 10-fold validation is used, we can build
10 classifiers each trained on 90% of the data and each evaluated on a different
10% of the data.

The deployment stage will deal with the configuration on how to deploy
classifiers onto the system, apply classifiers to automatically perform annotation
on un-annotated images, and deliver results to the users.

In the following sections, we will mainly focus on the major methods used in
the training stage and evaluation stage because of their importance.

3 The methodology

3.1 Feature generation using wavelet transform

We first obtain samples by integrating both images and manual annotations
using a database SQL query to specify which images should be processed. These
sample images are filtered and standardised in a uniform size suitable for the
feature generation process.

To characterise multi-gene expression patterns in an embryo image, in this
paper, we use wavelet transform to represent and generate features. Wavelet
transform has been well-recognised as a powerful tool for applications in signal
and image processing [10][11][12]. There are two major reasons for using the
wavelet transform in our case: (1) Wavelet transform provides a mathematical
tool for the hierarchical decomposition of functions, which can decompose images
into space and frequency domains, obtain a projective decomposition of the data
into different scales and therefore provide local information of images, unlike
Fourier transform that only provides global information of images in frequency
domain. (2) By using wavelet transform, the image can be decomposed into
different subimages at subbands (different resolution levels). The resolutions of
the subimages are reduced. On the other hand, the computational complexity
will be reduced by operating on a lower resolution image.

In mathematics, wavelet transform refers to the representation of a signal
in terms of a finite length or fast decaying oscillating waveform (known as the
mother wavelet). This waveform is scaled and translated to match the input
signal. In formal terms, this representation is a wavelet series, which is the coor-
dinate representation of a square integrable function with respect to a complete,
orthonormal set of basis functions for the Hilbert space of square integrable func-
tions. The wavelet transform includes continuous wavelet transform and discrete
wavelet transform. In this case, 2D discrete wavelet transform has been used to
generate features from images.

In fact, wavelet transform of a signal can be represented as an input passing
through a series filters with down sampling and deriving output signals based
on scales (resolution levels). This can be done by iteration process. Fig. 2(a)
shows the filter representation of wavelet transform on a 2D array input. LL is
a low-low pass filter that is a coarser transform of the original 2D input and a
circle with an arrow means down sampling by 2; H L is a high-low pass filter that



transforms the input along the vertical direction; LH is a low-high pass filter
that transforms the input along the horizontal direction ; and H H is a high-high
pass filter that transforms the input along the diagonal direction. At the first
iteration of applying these filters into the input (called wavelet decomposition),
the result of wavelet transform will be LLlout, HLlout, LH1lout, HHlout.
At the second iteration, we can continue performing wavelet transformation on
LLlout and the output will be LL2out, H L2out,H L2out, HH2out. These steps
can be continuously and the initial input signal therefore is decomposed into
different subbands.
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(a) Wavelet decomposition on 2D-array (b) Wavelet decomposition on an image
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Fig. 2. Wavelet decomposition

Mathematically, for a signal f(z,y) with 2D array(M * N), the wavelet
transform results of applying filters at different resolution levels (e.g., LLlout,
HLlout, LHlout, HHlout, LL2out, HL2o0ut, ... ) can be calculated as follows:

M-1N-1

Wolio.m.n) =~ 37 3 @ 0)bmn(z0) (1)
z=0 y=0
M—-1N-1
Wilimn) =~ 3 3 @) ma(au)i = (VD). (2)
z=0 y=0

where Wy (jo, m,n) is LLout1 and WJ) (4, m, n) respectively represents H Llout,
LH1lout and HH1lout when the wavelet decomposition is performed along the
vertical, horizontal and diagonal direction. jo is a scale as start point. ¢jo,m,n)
and 1 m.n are wavelet basis functions. In this case, we use Daubecheis wavelet
basis functions(db3) [13].

An example of wavelet transform on an embryo image at the second resolu-
tion level is shown in Fig. 2(b). The image is decomposed into four subbands
(sub-images). The subbands LH1, HL1 and HH1 are the changes of the image



along horizontal, vertical directions and diagonal directions with the higher fre-
quency component of the image, respectively. After applying filters, the wavelet
transform of LL1 is further carried out for the second level resolution as LL2,
LH2, HL2 and HH2. If the resolution of the image is 3040x1900, the sizes
of subimages downsampling by 2 at the second resolution level are respectively
LL2(760x475) , LH2(760x475), HL2(760x475), HH(760x475), LH1(1520x950),
HL1(1520x950) and HH1(1520x950). The total wavelet transform coefficients
(features) for the image are 3040*1900=>5,776,000.

3.2 Feature selection and extraction using Fisher Ratio Analysis

Due to the resulting of high-dimentional features generated it is necessary to se-
lect the most discriminating features. We use Fisher ratio analysis [14] for feature
selection and extraction. The Fisher ratio finds a separation space for discrimi-
nating features of two classes by maximizing the difference between classes and
minimising within the class.

Assuming two classes, C1{z1, ..., %, ...z} and Co{y1, ..., Yi, ...yn }, the Fisher
ratio is defined as the ratio of class-to-class variance to the variance of within
classes. The Fisher Ratio can be represented as follows:

o )2
FisherRatio = % (3)
(“1,1‘ + ”2,71)

where m; ; represents the mean of samples at the it feature in Cj, Mo ;
represents the mean of samples at the ** feature in Cs. v1,; represents the
variance of samples at the i*" feature in C;. Similarly, vg,; represents the variance
of samples at the i*? feature in Cs.

3.3 Classifier building using LDA

We train each classifier for each anatomical component, and formulate our multi-
class problem as a two-class problem. Namely, we treat and divide our sample
dataset into two classes during each training: one class contains all of sam-
ples with a certain gene expression to be annotated and the other contains
all of samples without that gene expression. In this case, we use Linear Dis-
criminant Analysis(LDA) [14] for solving our classification problem. For a given
two-class problem (Cy{z1,...,z;,...xn} and Co{y1,...,Yi, ...yn}), the linear dis-
criminant function can be formulated as follows:

F(X) = W'X + wp. (4)

The goal is to find W (weight vector) and wy ( threshold) so that if f(X) > 0,
then X is Cy and if f(X) < 0 then X is Cy. The idea is to find a hyperplane
that can separate these two classes. To achieve the goal, we need to maximise
the target function denoted as follows:
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where Sy is called the within-class scatter matrix and Sp is the between-
class scatter matrix. They are defined respectively as follows:

Sp = (ml - m2)(m1 - mz)t~ (6)

where,
mp = mean of x; € C; and ms = mean of y; € Cs.

Sw =851+ Ss. (7)

where,
Sl = Zrecl (X - ml)(X - ml)t and SQ = ZyGCQ(Y - TTLQ)(Y — mz)t.

4 Evaluation

We have implemented and deployed our data mining framework into our testbed
(a distributed environment). Two databases were created: one for annotations
of anatomical components and the other one for feature parameters that is used
to store parameters and results from the processes of feature generation and
extraction and classifier building. All of image files are located in a file system.
Because the features generated are big, we store the features into files hosted in a
file system, with references in annotation and parameter databases. Considering
the large-scale data mining application in this case, 4 Terabytes data we have
curated, we have modularized functional blocks shown in Fig. 1 in order to
parallelize these processes in further experiments in near future.

Currently, we have built up 9 classifiers for 9 gene expressions of anatomi-
cal components(Humerus, Handplate, Fibula, Tibia, Femur, Ribs, Petrous part,
Scapula and Head mesenchyme) and have evaluated our classifiers with multi-
gene expression patterns in 809 images. We use the cross validation with 10 folds.
The dataset (809 image samples) is divided into 10 subsets. 9 subsets are formed
as a training set and one is viewed as a test set. The classification performance
is computed based on the average correct or error rate across all 10 tries. The
advantage of this method is every sample will be in a test set only once and 9
times in a training set.

The preliminary result of the 10-fold cross validation in our case is shown in
table 1. The result shows the correct rate for identifying images with Humerus
can achieve 75.25% and the correct rate for identifying images without Humerus
gene expression can achieve 79.21%. Similarly, the correct rates for identify-
ing with and without gene expressions on Handplate as 71.05% and 72.31% ;
on Fibula as 72.73% and 71.8%; on Tibia as 74.67% and 71.8%; on Femur as
72.41% and 73.45%; on Ribs as 56.14% and 75.38%; on Petrous part as 79.03%
and 75.38%; on Scapula as 78.82% and 55.07%. Except the ribs, all other gene
expression can be identified well. The various morphologies and the number of
ribs in images cause the lower identification rate.



Table 1. The preliminary result of classification performance using 10-fold validation

Classification Performance
Sensitivity Specificity
Gene expression

Humerus 0.7525 0.7921
Handplate 0.7105 0.7231
Fibula 0.7273 0.718

Tibia 0.7467 0.7451
Femur 0.7241 0.7345
Ribs 0.5614 0.7538
Petrous part 0.7903 0.7538
Scapula 0.7882 0.7099
Head mesenchyme 0.7857 0.5507

Note: Sensitivity: true positive rate. Specificity: true negative rate.

5 Conclusion and Future Work

In this paper, we have developed a new data mining framework to facilitate the
automatic annotation of gene expression patterns of mouse embryos. There are
several important features of our framework: (1) the combination of statistical
pattern recognition with image processing techniques can help to reduce the cost
for processing large amount of data and improve the efficiency. We have adopted
the image processing method to standardise and denoise images. Wavelet, trans-
form and Fisher Ratio techniques have been chosen for feature generation and
feature extraction. The classifiers are constructed using LDA. (2) For enhancing
the extensibility of our framework, we formulate our multi-class problem into a
two-class problem and design our classifiers with a binary status:‘yes’ or ‘no’.
One classifier only identifies one anatomical component. Classifiers for each gene
expression are independent on each other. If new anatomical component need
be annotated, we do not have to train previous classifiers again. The classifiers
can be assembled and deployed into the system based on user requirements. (3)
We have evaluated our proposed framework by using images with multi-gene
expression patterns and the preliminary result shows our framework works well
for the automatic annotation of gene expression patterns of mouse embryos.

The future work will focus on the improvement of the classification perfor-
mance and parallelise each functional block proposed in this framework in order
to enhance the scalability for processing large-scale data of this case in further
experiments later on.
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