Distributed Processing of Large BioMedical
3D Images

Konstantinos Liakos2, Albert Burger!?, and Richard Baldock?

! Heriot-Watt University, School of Mathematical and Computer Sciences,
Ricarton Campus, EH14 4S, Edinburgh, Scotland, UK
2 MRC Human Genetics Unit, Western Hospital,
Crewe Road, EH4 2XU, Edinburgh, UK

Abstract. The Human Genetics Unit (HGU) of the Medical Research
Council (MRC) in Edinburgh has developed the Edinburgh Mouse Atlas,
a spatial temporal framework to store and analyze biological data includ-
ing 3D images that relate to mouse embryo development. The purpose
of the system is the analysis and querying of complex spatial patterns
in particular the patterns of gene activity during embryo development.
The framework holds large 3D grey level images and is implemented in
part as an object-oriented database. In this paper we propose a layered
architecture, based on the mediator approach, for the design of a trans-
parent, and scalable distributed system which can process objects that
can exceed 1GB in size. The system’s data are distributed and /or declus-
tered, across a number of image servers and are processed by specialized
mediators.

1 Introduction

The Edinburgh Mouse Atlas [1L2] is a digital atlas of mouse development, created
at the MRC Human Genetics Unit (HGU), Edinburgh, to store, analyze and
access mouse embryo development. The stored objects contain 3D images that
correspond to conventional histological sections as viewed under the microscope
and can be digitally re-sectioned to provide new views to match any arbitrary
section of the experimental embryos [2]. The volume of the processed 3D objects
can exceed 1GB and typical lab based machines fail to efficiently browse such
large bio-medical image reconstructions, particularly since the users may wish
to access more than one reconstruction at a time. This paper addresses that
problem by proposing a layered distributed system design that provides scalable
and transparent access to the image data; by transparency we mean that the
system hides from the end user the connection among the different servers and
the distribution of the data.

The proposed architecture has been influenced by the mediator approach.
Mediators were first described by Wiederfold [3] to provide a coherent solution to
the integration of heterogeneous and homogenous data by “abstracting, reducing,
merging and simplifying them”. In more detail mediators are “modules occupying

M. Daydé et al. (Eds.): VECPAR 2004, LNCS 3402, pp. [22HI55 2005.
© Springer-Verlag Berlin Heidelberg 2005

Distributed Processing of Large BioMedical 3D Images 143

an explicit active layer between the user applications and the data resources.
They are a software module that exploits encoded knowledge about certain sets
or subsets of data to create information for a higher layer of application” [3].
They encapsulate semantic knowledge about a number of distributed sources
providing to the user-applications a unique representation of the distributed
database context.

The middleware initially adopted for our purposes is the Common Object
Request Broker Architecture (CORBA) [L[5]. The CORBA framework provides
the means to develop open, flexible and scalable distributed applications that
can be easily maintained and updated. Data integration can be partially resolved
via the use of the Interface Definition Language (IDL) that separates the data
model from its implementation. In the past CORBA has been proposed as an
efficient middleware solution for bioinformatics projects [6L[7,[8,9]. In addition,
the European Bioinformatics Institute (EBI) [I0] has adopted CORBA as a
middleware for a number of its bioinformatics systems. A competing technology
to CORBA, also adopted by EBI, and gained a lot of attention in general, is
Web Services[IT]. However, Web Services are less efficient than CORBA/IIOP
over slow connected networks [I2]. As a consequence they currently cannot give
optimum solutions to applications that require fast processing and transmission
of large amounts of data. It should be noted though, that our proposed design is
independent of the middleware platform. Web services are evolving rapidly and
become the preferred option in many bioinformatics applications.

A property of this application is that a query on the data requests virtual
objects. These objects are analogous to a view in database terms that represent
2D section images that are computed at run time from the original 3D voxel
models stored in the database.

Our layered design is a modification of the mediator approach and is based
on the requirement for easy re-configuration for performance reasons. Simple
client-server designs such as that implemented in [2] for a genome-mapping pro-
totype are inadequate to handle the requirements derived from large voxel im-
age files. Although smaller size voxel images can be efficiently processed, larger
images result in an unacceptably slow response, due to memory paging and
CPU processing time. Furthermore integration of additional object resources
becomes impractical. The volume of our current as well as our anticipated fu-
ture objects, in addition to the requirement of providing very fast response times
introduce the necessity of distributing the cost of processing by declustering bi-
ological images in order to provide a scalable solution, minimize the cost of
the overall query response time, and make an optimum usage of the available
hardware resources. Our design adopts an n-tier solution by distributing the
cost of processing to a number of image servers. Such a task is accomplished
by declustering and distributing the image data across different image servers,
processing them in parallel. The image server processing is hidden by the use
of one or more mediator layers, which are responsible to provide transparent
access and to monitor image servers so that user requests are directed appro-
priately. In addition, mediators are designed to provide other services, such as

144 K. Liakos, A. Burger, and R. Baldock

query processing-decomposition and re-assembly, query optimization and user-
behavior prediction or “look-ahead”. This latter service enables pre-computation
of predicted requests in order to accelerate the response time of the system. Fi-
nally an important aspect of our design is its ability to vary the number mediators
and allow dynamically re-configure the system to optimize performance.

The emphasis of this paper is on the description and the efficiency of the
prototype system to illustrate the advantages gained by data distribution and
parallel processing. Issues such as the study of optimum declustering and place-
ment approaches and the evaluation of particular prediction techniques will be
reported elsewhere.

The remainder of this paper is organized as follows: Section 2 provides a
brief discussion of the current Mouse Atlas system covering in more detail image
processing issues and the notion of a virtual object. Section 3 provides a detailed
description of the proposed distributed architecture, section 4 presents the query
processing design and in section 5 some initial performance results to process
large reconstructions are provided. Finally section 6 discusses future issues and
concludes the paper.

2 Mouse Atlas

2.1 The Mouse Atlas System

The MRC Human Genetics Unit, Edinburgh, has developed the Edinburgh
Mouse Atlas [I2] based on an object-oriented architecture in order to store
and analyze biological data, including 3D images that relate to mouse embryo
development [2]. The embryo framework for the database is represented as a
set of voxel models (3D images), initially at each development stage defined by
Theiler [I3], but with the possibility of extension to finer time-steps especially at
earlier stages. The voxel models correspond to conventional histological sections
as viewed under the microscope and can be digitally re-sectioned to provide new
views to match any arbitrary section of an experimental embryo.

The purpose of the system is the analysis and querying of complex spatial pat-
terns, in particular the patterns of gene activity during embryo development. The
underlying image processing and manipulation uses the Woolz image-processing
library [ILI4L15] that was developed for automated microscope slide scanning
and is very efficient for binary set and morphological operations. The users navi-
gate in the 3D space via the use of user interface components that correspond to
particular viewing parameters, to define 2D sections (fig[ll) at any orientation.
At any given time only one such component can alter its value to generate a new
query. For efficient browsing it is necessary to get the entire voxel image into
the main memory so disk accesses are avoided. For very large reconstructions,
i.e. images of 1 —3GB, this is impractical for typical laboratory based machines,
particularly since users may wish to access many such reconstructions concur-
rently. Even with the entire image in memory most CPUs will be slow. While
CPU and memory specifications will be steadily improved image processing

Distributed Processing of Large BioMedical 3D Images 145

1ERE
&
g

Ve b -t hreel e 2
B o o.d
o4
e . |
e . — . |
Mo Pt | e i | v ector | 0 |

§ St | Foiens [ESUmSE (B I v

Fig. 1. GUI to process 3D Woolz images. Specialized components enable the rotation
within the 3D space. The requested sections can be scaled, magnified and saved to disk

requirements are also expected to increase; e.g. future image volumes might well
reach 10 — 100G B.

There are many aspects of the Mouse Atlas, which are not directly relevant to
the discussion that follows and therefore omitted from this paper. The interested

reader is referred to [I12L[14L15].

2.2 Virtual Objects and Woolz Image Processing

The Woolz library that has been developed by the MRC HGU performs all
image-processing operations of this system. Woolz uses an interval coding data
structure so that only grey-values corresponding to foreground regions (the em-
bryo) are held in memory. For this type of image this can result in 30 — 50%
reduction in memory footprint in comparison with conventional image formats.
While detailed information on various other aspects can be found in previous
publications [IL2L[I4LT5], our emphasis here is on the efficient computation of
requested 2D sections. These are virtual objects, objects that are not saved
in the data sources, but are computed during run-time by Woolz library func-
tions associated with the original 3D voxel data. This is analogous to a view in
database terms. The rotation within the original 3D space that results in the
generation of a section view is determined as follows.

Given an original coordinate r = (x,v, 2)7, the viewing plane (fig[Z) is defined
as a plane of constant z in the new coordinates ' = (2/,y/,2')T, i.e. the new
z-axis is the line-of-sight. This axis is fully determined by defining a single fixed-
point f that is the new coordinate origin, and a 3D rotation. The actual view
plane is then defined to be perpendicular to this axis and is determined by a
scalar distance parameter d along the new axis. In this way the transformation
between the original r and viewing coordinates, 7, is determined by a 3D rotation
and translation with the viewing plane defined as a plane of constant 2’ = d. A
3D rotation can be defined in terms of Eulerian angles [16] with full details given

146 K. Liakos, A. Burger, and R. Baldock

Fig. 2. The viewing plane is defined to be perpendicular to the viewing direction given
by angles phi and theta. The actual plane is distance d from the fixed-point f. For the
user interface phi is termed pitch and theta is yaw

in [2]. These mathematical details are not essential to the understanding of the
rest of the paper, but highlight the point that the computation of a 2D section
requested by a user query involves the retrieval of 3D data from the database as
well as some image processing on that data.

3 The System’s Architecture

The proposed design consists of four main components: client, directory, medi-
ator and image servers (figh]). The client consists of a GUI that provides the
stage selection menus, controls for section parameters and is responsible for the
generation of user queries while the mediators provide a transparent view onto
the image server data sources. The mediators encapsulate the knowledge of the
data sources (metadata), such as the objects which are stored in addition to their
structural properties and the image servers where objects can be found, provid-
ing transparent access to the image data. Image servers provide direct access to
the underlying image storage e.g. files and databases. It is only an image server
that loads and directly queries a Woolz object. Due to the volume of the 3D
image data, declustering is expected to be introduced. By declustering we mean
the process of cutting an original 3D voxel into smaller dimensions placing them
at different sites. A key difference in the concept of declustering between our ap-
proach and the one that is normally in use is that our declustering performance
relates to the CPU speed up that can be gained; current declustering schemes
are concerned with the disk IO speed up [I'7,[I8]. Our system assumes that for
each request the declustered 3D image data can be loaded into the main memory
of each image server. Finally directory servers enable access to mediators and
image servers by providing their connection details. Note that clients can only
acquire information about a mediator while a mediator can acquire connection
details related both to other mediators and image servers.

Distributed Processing of Large BioMedical 3D Images 147

Service

| Mediator | | Mediator |
I
| : l |
mage : ; mage
Server | |Med|ator| |Med|ator| | Server |
Image Image Image
Server Server Server

Fig. 3. Layered design based on the system’s requirements

A mediator’s task is to provide a unified view and transparent access to the
declustered distributed Woolz objects, monitoring of the user access patterns
and prediction of future requests so as to pre-compute related sections. The
successful completion of these tasks depends on a metadata model that links
image servers to Woolz image objects and Woolz objects to object properties,
such as their structure and size. An image server on the other hand provides
a logical view onto the Woolz data and a Woolz query-processing model to
access them. The object oriented database in which Woolz are saved can be only
accessed by appropriate image servers.

In a mediator/wrapper approach (fig[d]) a mediator encapsulates a global data
model to serve a number of heterogeneous data sources. Such an approach has
been adopted by many distributed systems such as DISCO [19], GARLIC [20]
and Informia [21I]. In comparison to other bioinformatics implementations where
the mediator approach is used to integrate heterogeneous data sources (Raj and
Ishii [§], and Kemp et al [9]) our design seems similar because it also encapsulates
a schema of its integrated image servers, however in contrast to most of them,
where a centralized mediator serves a number of data sources, our mediators
are fully scalable (fig[]). A hierarchy of mediators can be dynamically created
according to the performance needs of the system at run time. As a consequence
our design can result in both centralized and distributed topologies depending
on performance requirements. More precisely a mediator might not only control
a number of image servers but also a number of mediators as well. Hence a
mediator’s schema might be based on the schema of its lower-level mediators.
The concept of such a composable approach is similar to AMOS II [2223],
a lightweight OODBMS, where mediators regard interconnecting mediators as
data sources. However the purpose of AMOS II and its implementation are
different from ours. AMOS II is a federated multi-database system that combines
heterogeneous data sources and views. On the other hand our system’s main aim
is to reduce the time needed to fetch, process and display large image objects.
Because the processed Woolz objects are homogeneous, the emphasis is not given
to the integration of diverse data sources. The mediator approach is used to
distribute the cost of processing, exploit data parallelism and enable processing
of very large reconstructions. Apart from that our proposal is based on standard

148 K. Liakos, A. Burger, and R. Baldock

| Wrapper |~ -—-- <| Wrapper |

Fig. 4. The Mediator/Wrapper approach

and flexible solutions that facilitate scalability and maintenance, and is language
and platform independent.

Furthermore our mediators perform additional tasks such as the monitoring
of the user access patterns and the pre-computation of future requested sections
so as to improve the overall performance of the system. These facilities can be
seen as an extension of our query processing mechanism that is described in
the following section. Details of this speculative computation model are beyond
the scope of this paper and will be presented elsewhere. Under speculative pre-
computation we mean that a mediator requests image servers to precompute
possible future requested sections. Until the actual user request is received those
predicted sections are not transmitted from the image servers to the mediator,
where they are further processed, minimizing the cost of processing predicted
sections that are not eventually needed.

The client component consists of a GUI that provides the tools to query and
process Woolz image objects. Initially clients are unaware about the connection
details of the mediators they are connected to. Such information is acquired
from the directory server (figl]). Another important issue is that clients are not
aware of the underlying Woolz technology [2]. Their only intelligence relates to
the display of the 2D sections, which are acquired as bitmap arrays, and their
understanding of the 3D bounding box of the saved Woolz objects. An important
property of the technology underlying the GUI is that it results in asking only
the visible part of every reconstruction. As a consequence only a small part
of the whole virtual object is requested, minimizing the data that needs to be
transmitted over the net. The client GUI is intended to be as light as possible.

We are aware of the overhead that a layered approach might introduce. At
this prototype level, our emphasis was on functionality. A performance study
of the impact of multiple mediators is planned. The focal measures of such a
study will be the tradeoff between the network and processing overhead and the
potential improvement of the overall response time.

4 Query Processing

Kossman [24] has extensively described query processing optimization tech-
niques. Assuming that Woolz internal image processing is optimal, our efforts

Distributed Processing of Large BioMedical 3D Images 149

Query Generator

query containing GUI coordinates
Query Rewriter

query containing Woolz coordinates
Query Planner

plan

H

Execution Engine

Fig. 5. Query Processing Architecture

are focused on accessing the Woolz data sources as fast as possible producing
the adequate query for them. Our query processing architecture comprises of a
query generator, a query rewriter, a query planner and a query execution module
(fighl). A query generator is found on the client side and involves the generation
of a Woolz query based on the visible coordinate system of the GUI. The query
rewriter module transforms the query from GUI coordinates into Woolz coordi-
nates. The generation of a query can be also introduced on the mediator’s side
as a consequence of the pre-computation process algorithm that monitors user
activity. The query planner, that includes a query rewriter module, selects only
the data servers that can respond positively to a particular query. To optimize
system performance only the image servers that can respond to queries are sent
modified user requests. Only after the data servers are selected, a query-rewriting
process starts so as to split the initial Woolz query and request only the sub-
region to which each data server can respond. The query execution model that
is found both in the client and mediator is used to transform either a user or a
mediator query into a compatible IDL query. On the other hand query execution
on the image server side relates to the use of Woolz libraries so as to physically
execute a query.

5 Experiments

To test our approach, a prototype system has been developed and used for a
number of experiments. The experiments were run on a SUN Netra array, which
includes 10 servers running SOLARIS 8. Each server has the same capabili-
ties and the interconnection between them is provided via the use of dedicated
switches whose speed is 100Mbps. Every server has 500MB of RAM, 500 MHz
of UltraSPARC-II CPU and 256 Kbytes of e-cache. The developed programs
were written according to the requirements of the system’s design in Java [25].
A benchmark was developed that requests all 2D sections for each reconstruc-
tion for a given viewing orientation. Only after a client acquires a requested 2D
section, a generation of a new query takes place. The window size is set up to

150 K. Liakos, A. Burger, and R. Baldock

Overall Response time-Sub Components included

14004
O network
1200 - m mediator
mimageservers

-

o

o

o
1

msec
(milliseconds)
[e]
o
o
1

5
Clusters

Fig. 6. Detailed analysis of the times spend throughout the experiment. Declustering
and parallelism result in decreasing the system’s average response time when 8 clusters
are used

8002400 pixels while a centralized mediator is used throughout the experiments.
Every image server responds to a mediator query by sending only the part of the
section that it can generate. The requested parts are determined by the window
size of the clients GUI and the section parameters.

The aim of the experiments was to establish the capability of our distributed
design to handle large reconstructions and to understand and model the effects
of data declustering and parallelism. For these tests the 3D reconstruction of a
mouse embryo at its developmental stage Theiler stage 20 (TS20), a voxel image
object of size 685.5 MB, was used. Parallelism is achieved by the use multiple
processes communicating using CORBA and within a single process, e.g. the
mediator or image server by the use of java programming threads [25]. Data
declustering is the process of partitioning an object into a number of fragments.

Overall Response Time

16001
1400+
12001
1000+
§ 800+
E 600
4004
200+

—=— Overall Time
—o- predicted

Fig. 7. Overall response time. The average response time of the system is reduced by
the use of 8 clusters

Distributed Processing of Large BioMedical 3D Images 151

The first experiment examines the overall advantage gained by the introduction
of data parallelism and declustering. TS20 was cut into a number of clusters
(2 — 8) of approximately equal size and placed in different locations over the
network. The benchmark described previously was used to measure the system’s
performance. In this case the declustering was chosen so that each image server
would respond so that the overall potential benefit of the parallelism could be
established.

As expected the system’s performance greatly improved through the use of
the parallel processing design. In figlf] an estimation of the time spent at each
component of the system is given, while in fig[7l a more statistical analysis of
the system’s performance is provided. The displayed curve represents optimal
performance assuming linear speedup with respect to the two-computer case i.e.:

% where cluster No is the number of clusters and AV G(2) is the average

Mediator-Average Response Time

800~ o Nedi
oy
600-
o 500
% 400
E
300+
200-
100
0

T T T 1
5 6 7 8

T T T
2 3 4
Clusters

Fig. 8. Estimated Time spent on the mediator

Image Servers-Average Response Time

900+
4 —=— ImageServer

7004

600+

8 500+

E 4004

300

200

1007

T T T T T 1
50 100 150 200 250 300 350
Cluster Volume(MB)

Fig. 9. Declustering effects. The process in which object were cut along their Y — axis
and placed in different image servers results in improving the image server’s response
times when the number of clusters increases

152 K. Liakos, A. Burger, and R. Baldock

response time when 2 clusters are used.The difference between the curve and
the measured points presumably reflects the performance of our declustering
approach (fig[d)), and the cost of processing many clusters simultaneously in the
mediator (figl])). The most important module of our experiment is the mediator
since it monitors, directs and finally processes user requests. The use of one
CPU in our mediator server results in similar performance results for all the
experiments that were carried out (figlf]). The multi-threaded model adopted for
the mediator can further improve its performance results provided that a multi
CPU machine will be used. Under the current implementation java threads add
an additional cost that is however negligible. The derived variations under the
use of a small number of clusters are a consequence on variations on the response
times of the individual image servers.

Finally the effect of declustering is studied by examining the performance of
the image servers when the volume of their data sources decreases. The declus-
tering approach that was followed resulted in objects whose volume varied from
342.75 MB (2 Clusters) to 85.69 MB (8 Clusters) As expected (figld]) the smaller
the image volume the faster a section is generated and sent back to the media-
tor for further process. The low standard errors and the average response time
results are considered very efficient and reveal the response times that can be
achieved for larger volume image files that are declustered to a larger number
of image servers. By examining the predicted line of fig[d] it is noticeable that
it performs worse than the actual results obtained from the experiment. Such
behavior is explained by the poor results obtained by the usage of 2 clusters. To
be more precise, in the case of the 2 clusters, the processing of them may exceed
the available main memory, resulting in such a poor performance.

While both the effects of declustering and parallelism have been described in
detail, a last experiment is carried out to establish the capability of our design
to handle very large reconstructions. More precisely T'S20 is scaled by a factor
of 2 across its X —Y — Z axis resulting in an object sizing 5.5 GB. As previously,
the objects are declustered across their Y coordinate system, producing 8 sub
objects of roughly the same volume, that are distributed across 8 image servers.
In addition Theiler Stage 16 (TS16) is also scaled accordingly resulting in an
object sizing 1.47 GB. The window size remained the same (4002800 pixels)
while our benchmark is slightly changed in order to request the same amount of
sections we had requested in the previous experiments.

The results of the experiment can be seen in fig[T0Ol As expected, the response
time of the system gets slower when the volume of the requested objects get
larger. The gap between the image server response time and the system response
time represent the mediator time in addition to the network and idle time. By
better examining the graph it can be noticed that the mediator’s time is slightly
bigger when the original TS20 is under use. Because of the volume of the scaled
TS16 and TS20 it is impossible to make maximum usage of the image servers. As
a consequence when the scaled T'S16 is used, 7 image servers respond in parallel
while only 4 of them respond in parallel when the scaled TS20 is requested. As a
result there is an overhead related to network requests and thread processing that

Distributed Processing of Large BioMedical 3D Images 153

Processing of Large Objects

1400
—a— Overall Time
12001 —o- Image Server
1000
3}
@ 800- 4
13 Mediator-Net
600+ Time
400+ }
200
0

T T T T T 1
0 1000 20003000 4000 5000 6000
Volume(MB)

Fig. 10. The larger the volume and the dimensions of the objects are, the slowest
their response time. The gap between the 2 diagrams represents the mediator time in
addition to network and idle time

is not provided in these experiments. This overhead corresponds to the additional
requests and threads that are generated when all image servers are involved
in processing a user request, that result in increasing the cost of processing
at the mediator side. All experiments are expected to reveal almost the same
response time at the mediator side, given the fact that the same window size
is used and the volume of the requested sections is roughly the same. Moreover
such a feature also proposes further experimentations to define data declustering
optimization techniques.

6 Future Work and Conclusions

This paper discussed the necessity of a distributed approach to efficiently process
large biomedical 3D image data. In the Edinburgh Mouse Atlas, user queries do
not directly correspond to the 3D objects saved in the database but rather to
2D sections, which need to be calculated at run-time from the 3D image data.
This creates an interesting context in which new analysis related to different
declustering schemes is required.

Some preliminary experiments reveal that user navigation patterns strongly
affect the optimum cluster generation procedure and hence further details con-
cerning optimum declustering and placement approaches is required. The re-
quired analysis will examine different placement approaches to identify the one
that minimizes the cost of distribution and optimizes the performance of the
system.

In addition our mediators will be enhanced with prediction capabilities to
pre-compute future requested queries based on the monitoring of the user access
patterns. Initial studies here suggest that time series prediction approaches such
as the Autoregressive Integrated Moving Average (ARIMA) [2627] and the Ex-
ponential Weighed Moving Average (EWMA) [28] adapt fast and efficiently to

154 K. Liakos, A. Burger, and R. Baldock

changing user behaviors. However the cost of the algorithms and the improve-
ment of the system need to be evaluated. Apart from that a unified prediction
policy should be suggested to decide how, when and where precomputation will
be introduced. Under this concept the identification and the properties of differ-
ent user access patterns are of great importance, so as to apply prediction only
when needed.

In summary, this paper has presented a layered design to handle large bioin-
formatics 3D images, which represent different stages of mouse embryo develop-
ment. Such a design is based on the mediator approach and exploits the advan-
tages gained by parallel processing and data distribution.The work thus far has
shown the validity of the approach and already provides an acceptable response
time for user interaction with a very large-scale image (5.5 GB). Data distri-
bution and parallel processing are essential not only to provide faster response
times but also to enable processing of large objects unable to fit into the main
memory of a single machine. Such features have been presented not only by pro-
cessing a very large scale biomedical image but also by examining the results
of declustering and data distribution for a smaller scale object (685.5 MB) in
which the overall response time has been decreased more than 100% when all 8
available distributed CPUs have been used.

Acknowledgments

The MRC HGU in Edinburgh has sponsored the presented work.

References

1. R. A. Baldock, F. J. Verbeek and J. L. Vonesch, 3-D Reconstructions for graphical
databases of gene expression, Seminars in Cell and Developmental Biology, 1997,
pp. 499-507.

2. R. A Baldock, C. Dubreuil, B. Hill and D. Davidson, The Edinburgh Mouse Atlas:
Basic Structure and Informatics, Bioinformatics Databases and Systems, Ed. S
Levotsky (Kluwer Academic Press, 1999), pp. 102-115.

3. G. Wiederhold, Mediators in the Architecture of Future Information Systems,
IEEE Computer, vol 25, no 3, 1992 pp: 38-49.

4. Object Management Group, OMG, www.omg.org .

5. R. Orfali, D.Harkey, Client/Server Programming with Java and CORBA, Second
Edition, Wiley Computer Publishing, ISBN: 0-471-24578-X,1998.

6. A. Spiridou, A View System for CORBA-Wrapped Data Source, European Bioin-
formatics Institut, Proceedings of the IEEE Advances in Digital Libraries 2000
(ADL2000).

7. J. Hu, C. Mungall, D. Nicholson and A. L. Archibald, Design and implementation
of a CORBA-based genome mapping system prototype, Bioinformatics, ,2nd ed,
vol.14, 1998,pp. 112-120.

8. P. Raj, N Ishii, Interoperability of Biological Databases by CORBA, Nagoya In-
stitute of Technology, Proceedings of the 1999 International Conference on Infor-
mation Intelligence and Systems, March 31 April 03, Rockville, Maryland, 1999.

10.
11.
12.
13.
14.
15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28

Distributed Processing of Large BioMedical 3D Images 155

J. Graham,L.. Kemp, N. Angelopoulos, P. M.D.Gray, A schema-based approach
to building a bioinformatics database federation, Proceedings of the IEEE In-
ternational Symposium on Bio-Informatics and Biomedical Engineering (BIBE
2000),Arlilngton,Virginia, USA, November 08-10, 2000.

European Bioinformatics Instritute, http://www.ebi.ac.uk/ .

World wide World Consortium, www.w3.org .

D. C. Schmidt, S. Vinoski, Objet Interconnections: CORBA and XML-Part3:
SOAP and Web Servises, C/C++ Users Journal, www.cuj.com

K. Theiler, The House Mouse: Atlas of Embryonic Development, Springer-Verlag,
1989.

R. A. Baldock, J. Bard, M. Kaufman, D. Davidson, A real mouse for your computer.
BioEssays, vol. 14 no 7, 1992, pp. 501-503.

M. Ringwald, R. A. Baldock, j. Bard, M. Kaufman, J. T. Eppig, J. E. Richardson,
J. H. Nadeau, D. Davidson, A database for mouse development, Science 265, 1994,
pp- 2033-2034.

H. Goldstein, Classical Mechanic, Addison-Wesley, Reading, MA, 2nd ed., 1950.
Y. Zhou, S. Shekhar, M. Coyle,Disk Allocation Methods for Parallelizing Grid
Files, ICDE 1994, 1994, pp 243-252

C. Chen, R. Sinha, R. Bhatia, Efficient Disk Allocation Schemes for Parallel Re-
trieval of Multidimensional Grid Data, Thirteenth International Conference on
Scientific and Statistical Database Management, Fairfax, Virginia, July 18 - 20,
2001

A. Tomasic, L. Raschid, P. Valduriez, Scaling access to heterogeneous data sources
with disco, IEEE Transactions on Knowledge and Data Engineering, vol 10, no 5
,September /October 1998, pp. 808-823.

L. Haas, D. Kossmann, E. L. Wimmers, J. Yang, Optimizing Queries across Diverse
Data Sources, Proceedings of the Twenty-third International Conference on Very
Large Databases, Athens Greece, August 1999.

M. L. Barja, T. A. Bratvold, J. Myllymki, G. Sonnenberger, Informia, A Mediator
for Integrated Access to Heterogeneous Information Sources, In Gardarin, French,
Pissinou, Makki, Bouganim (editors), Proceedings of the Conference on Informa-
tion and Knowledge Management CIKM’98, Washington DC, USA, November 3-7,
1998, pages 234-241, ACM Press, 1998.

V. Josifovski, T. Katchaounov, T. Risch, Optimizing Queries in Distributed and
Composable Mediators, Proceedings of the Fourth IECIS International Conference
on Cooperative Information Systems, Edinburgh, Scotland, September 02-04 1999.
T.Risch, V.Josifovski, Distributed Data Integration by Object-Oriented Mediator
Servers, Concurrency and Computation: Practice and Experience J. 13(11), John
Wiley & Sons, September, 2001.

D. Kossman, The State of the Art in Distributed Query Processing, ACM Com-
puting Surveys, September 2000.

Java, www.java.sun.com

C. Chatfield, Time Series Forecasting, Charman & Hall/CRC, ISBN 1-58488-063-5,
2001.

G. E. P. Box, G. M. Jenkins, Time Series Analysis: forecasting and control, ISBN:
0-8162-1104-3, 1976.

. C. D. Lewis, Industrial Business Forecasting Methods, ISBN: 0408005599

	Introduction
	Mouse Atlas
	The Mouse Atlas System
	Virtual Objects and Woolz Image Processing

	The System's Architecture
	Query Processing
	Experiments
	Future Work and Conclusions

